Numerical prediction of extensional flows in contraction geometries: hybrid finite volume/element method

نویسندگان

  • M. Aboubacar
  • H. Matallah
چکیده

We examine the flow of viscoelastic fluids with various shear and elongational properties in axisymmetric and planar 4:1 contractions, under creeping flow conditions. Particular attention is paid to the influence of elongational viscosity upon vortex enhancement/inhibition. Simulations are performed with a novel hybrid finite volume/element algorithm. The momentum and continuity equations are solved by a Taylor-Galerkin/pressure-correction finite element method, whilst the constitutive equation is dealt with by a cell-vertex finite volume algorithm. Both abrupt and rounded-corner configurations are considered. The Oldroyd-B fluid exhibits vortex enhancement in axisymmetric flows, and vortex reduction in planar flows, qualitatively reproducing experimental observation for some Boger fluids. For shearthinning fluids (Phan-Thien/Tanner models), both vortex enhancement and inhibition is observed. This follows trends in extensional viscosity. Lip-vortex activity has been observed in planar and sharp-corner instances, but not in axisymmetric or rounded-corner flows. Finally, cross-flow extensional-stress contours in the salient-corner neighbourhood reflect the size and curvature of the associated vortex structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Numerical Prediction of Planar Viscoelastic Contraction Flows using the Pom-Pom Model and Higher-Order Finite Volume Schemes - Part II

This study investigates the numerical solution of viscoelastic flows using two contrasting high-order finite volume schemes. We extend our earlier work for Poiseuille flow in a planar channel and the single equation form of the extended pom-pom (SXPP) model [1], to determine steady-state solutions for planar 4:1 sharp contraction flows. The numerical techniques employed are time-stepping algori...

متن کامل

The numerical prediction of planar viscoelastic contraction flows using the pom-pom model and higher-order finite volume schemes

This study investigates the numerical solution of viscoelastic flows using two contrasting high-order finite volume schemes. We extend our earlier work for Poiseuille flow in a planar channel and the single equation form of the extended pom-pom (SXPP) model [1], to determine steady-state solutions for planar 4:1 sharp contraction flows. The numerical techniques employed are time-stepping algori...

متن کامل

Extensional Response of the Pom-pom Model through Planar Contraction Flows for Branched Polymer Melts -part 2 Extensional Response of the Pom-pom Model through Planar Contraction Flows for Branched Polymer Melts -part 2

One objective of this study is to assess the influence of the number of dangling arms at each end of the pom-pom molecule on flow characteristics in a 4:1 planar rounded-corner contraction, where varying the number of arms affects the level of entanglement in the system. For these complex flows, we evaluate the major influence of extensional viscosity and Trouton ratio when comparing kinetic-ba...

متن کامل

Numerical simulations of shear dependent viscoelastic flows with a combined finite element-finite volume method

A hybrid combined finite element–finite volume method has been developed for the numerical simulation of shear-dependent viscoelastic flow problems governed by a generalized Oldroyd-B model with a non-constant viscosity function. The method is applied to the 4:1 planar contraction benchmark problem, to investigate the influence of the viscosity effects on the flow and results are compared with ...

متن کامل

Numerical Analysis of Fully Developed Flow and Heat Transfer in Channels with Periodically Grooved Parts (TECHNICAL NOTE)

To obtain a higher heat transfer in the low Reynolds number flows, wavy channels are often employed in myriad engineering applications. In this study, the geometry of grooves shapes is parameterized by means of four angles. By changing these parameters new geometries are generated and numerical simulations are carried out for internal fully developed flow and heat transfer. Results are compared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002